智能分析可以看作是一个将数据转化为信息的模块。近两年,围绕深度学习技术,人脸视频结构化描述、车辆视频结构化描述等复合型智能分析算法开始在安防中应用,而且越来越成熟、广泛。
智能分析技术可以代替人力,从视频等数据中提取出客户感兴趣的信息。安防监控中,智能分析技术通过电子警察、人脸识别、人数统计、自动跟踪球机、主从跟踪球机、视频质量诊断服务器、智能视频浓缩、车辆二次分析等产品,应用在智能交通、安防、公安刑侦、电力、金融等十一个大行业。
智能算法存在的问题
智能分析算法受实际场景影响较大。算法在设计的时候,需要对问题进行建模,这些模型是对场景的抽象和近似,由于实际场景非常复杂,单一的模型无法准确描述,就需要假设场景满足某些约束条件,如果这些条件与实际场景不符,算法的性能就会下降。现在,深度学习技术的研究有望缓解这一问题,该技术在训练模型参数的阶段使用了海量数据,相比传统机器学习方法,包含了足够多的场景,并且直接建立从数据到信息的映射,对约束条件的依赖较少。但是,短期来看,基于深度学习的算法仍然无法从根本上解决算法对实际场景的依赖。
智能分析算法在整个智能方案中的重要性需要转化为引导作用。在大部分智能化产品的设计过程中,已经认识到了智能分析算法的重要性,但是,留给算法使用的资源却很有限,如计算资源不足,目标在图像中的分辨率不够等问题,最终体现出来现象就是算法准确率、实时性等指标达到不预期。随着智能分析重要性的提升,尤其是客户对智能分析结果的要求越来越高,算法需要在整个方案中发挥一定的引导作用,在软硬件的设计过程中,将满足客户的智能需求作为共同的目标。
此外,某些智能分析算法的性能与安防行业的具体要求间也存在着一定差距,如算法准确性、实时性、鲁棒性、环境适应性等等,但这些指标的提升是长期的,需要相关领域的人才一起努力来完成。
智能分析与人工智能
作为强化智能分析的手段,人工智能在近一年表现抢眼,已经有很多安防企业开始投入资源开发基于深度学习技术的算法、产品,深度学习和大数据为智能视频分析技术的发展带来两大方面的提升。
首先,提升了智能视频分析中很多机器学习算法的准确性,例如,在国际权威人脸识别公开测试平台LFW(Labeled Faces in the Wild)上,排行前列的算法精度都已经超过了人类的识别精度。其它如车系识别、人数统计等算法中,深度学习算法的表现也远远超过了传统的机器学习算法。
其次,深度学习和大数据技术直接建立了从数据到目标模型的映射,不再需要人工选择或创建特征集来描述目标。这种特点一定程度上降低了机器学习领域的门槛,也帮助一些以前很难人工建模的问题得以解决,促进了相关技术应用的发展。但同时,深度学习的训练过程需要海量数据,需要计算能力足够强大的硬件,深度学习算法本身的升级则需要更专业的人才能完成,这些因素也带来了新的挑战。
智能分析技术将以解决方案的形式获得更快速、更广泛的发展。在很多人的印象中,智能分析技术可能是一个算法上的概念,但如果传感器提供的数据、用于计算的芯片性能都不理想,那么只靠算法,对最终结果的提升作用是有限的。所以,现在很多智能解决方案中都包含了更丰富的传感器与更强大的处理芯片,一方面,智能分析算法需要硬件方案提供输入的全景视频信息;另一方面,多目拼接相机中的实时拼接算法、与球机进行联动时的高精度标定算法等,也是硬件方案中的关键部分。同样,芯片技术也是智能解决方案中不可或缺的。
过去几年,安防龙头企业成功地从产品营销升级为解决方案营销,随着算法、芯片、多维传感等技术的不断发展,必将推动智能解决方案快速发展。